
Bigger and Bigger gets Harder and Harder

Let P (f, x) be a nontrivial semantic property of programs f and inputs x,

like the halting property (“Does f halt on input x?”), and let pn(f, x) be a

program purporting to determine P , but only when the sizes of both f and x
are no greater than n. Clearly such programs exist for solving any property P
(semantic or not) and for every size-bound n, since there are only finitely many

possible programs and inputs of that limited size and a table lookup would fit

the bill.

By “nontrivial” we mean that there are f, x for which the property holds and

others for which it does not. By “semantic” we mean that any two programs

with the same input-output behavior either both have the property or neither

does.

Since the property is nontrivial, there must be values Y , y, Z, and z, such

that P (Y, y) is false while P (Z, z) is true. For the halting problem, Y is any

program that diverges on y and Z is one that converges for z.
Consider, now, the program

c(x) :=

�
Y (y) if pn(x, x)

Z(z) otherwise

It it straightforward to check that pn(c, c) cannot give the correct answer:

• If pn(c, c) returns true, then c(c) behaves like Y (y). Because P (Y, y)
is false and is a semantic property, P (c, c) must be false, and so the

answer given by pn(c, c) should also have been false.

• If, on the other hand, pn(c, c) returns false, then c(c) behaves like Z(z).
It follows that both P (Z, z) and P (c, c) are true and the answer should

have been true.

• Finally, pn(c, c) is patently wrong if it returns an invalid answer (neither

true nor false) or diverges and gives no answer at all.

So, assuming that the program pn works as advertized, it must be that the

counterexample c is too big for it. Now the size of c is

|c| = |pn|+ k,

where k is the combined sizes of Y , y, Z, and z, plus a few (language dependent)

characters for the conditional test and the call to pn.

1

The moral of all this is that any correct program pn must be almost as large

as its maximum legal input (or even larger):

|pn| = |c| − k > n− k.

It follows immediately that there can be no (finite) program that correctly

decides any (nontrivial semantic) property P for all programs and all inputs.

Moreover, there exists some constant k (that depends only on the propertyP
and on the specific programming language) such that no program p correctly

decides P for all programs and inputs of size up to |p|+ k.

Notes:

1. The only programming features that were used in the above argument are

calls to functions and conditionals (and copying input).

2. How size is measured is not criticial.

3. The program P might execute or interpret its input f , but only on values

it is certain that f terminates, or else it could not guarantee its own

termination.

4. Most modern programming languages allow programs to be passed as pa-

rameters, as done here. If not, then one can pass instead some computable

code or identification number for the program. By “computable”, we mean

that it is possible to decompose the program based on the code and look

at its component parts and also interpret it and execute the referenced

program on any given input.

5. Essentially the same argument applies to properties of programs with more

than one argument (but not when there is no input). In that case, both

programs and tuples of inputs can be enumerated and assigned numerical

values.

2

