
Computational Models: Lecture 10, Spring 2011

Linear Bounded Automata

Unrestricted Grammar

Introduction to Time Complexity

Sipser’s book, Chapter 5, Sections 5.3 and Chapter 7,
Section 7.1
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Linear Bounded Automata

A restricted form of TM.

Cannot move off portion of tape containing input

Details: Has special letters for start and end input,
which it can not modify.

Can not move left (right) of the left (right) mark.

Size of input determines size of memory

1 01
0

1 01
0

Slides modified Yishay Mansour on modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2



Linear Bounded Automata

Question: Why linear?

Answer: Using a tape alphabet larger than the input
alphabet increases memory by a constant factor.
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Linear Bounded Automata

Believe it or not, LBAs are quite powerful.
The deciders for

ADFA (does a DFA accept a string?)

ACFG (is string in a CFG?)

EMPTYDFA (is a DFA trivial?)

EMPTYCFG (is a CFL empty?)

are all LBAs.

Every CFL can be decided by a LBA.

Not too easy to find a natural, decidable language that
cannot be decided by an LBA.
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Acceptance for LBAs

Define

ALBA = {〈M,w〉|M is an LBA that accepts w}

Question: Is ALBA decidable?

Answer: Unlike ATM, the language ALBA is decidable!
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Lemma:

Let M be a LBA with

q states

g symbols in tape alphabet

On an input of size n, LBA has exactly qngn distinct
configurations, because a configuration involves:

control state (q possibilities)

head position (n possibilities)

tape contents (gn possibilities)
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Theorem: ALBA is decidable

Idea:

Check that M is a valid LBA, if not reject.

Simulate M on w

But what do we do if M loops?

Must detect looping and reject.

M loops if and only if it repeats a configuration.

Why? And is this also true of “regular” TMs?

By pigeon hole, if our LBA M runs long enough, it must
repeat a configuration!
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Theorem: ALBA is decidable

On input 〈M,w〉, where M is an LBA and w ∈ Σ∗,

1. Simulate M on w,

2. while maintaining a counter.

3. Counter incremented by 1 per each simulated step (of
M ).

4. Keep simulating M for qngn steps, or until it halts
(whichever comes first)

5. If M has halted, accept w if it was accepted by M , and
reject w if it was rejected by M .

6. reject w if counter limit reached (M has not halted).
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More LBAs

Surprisingly though, LBAs do have undecidable problems
too!

Here is a related problem.

Non-EMPTYLBA = {〈M〉|M is an LBA and L(M) 6= ∅}

Question: Is Non-EMPTYLBA decidable?
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Non-EMPTYLBA

Non-EMPTYLBA = {〈M〉|M is an LBA and L(M) 6= ∅}

Theorem: Non-EMPTYLBA is undecidable.

Proof by reduction from ATM, using computation histories.
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More LBAs

Given M and w, we will construct an LBA, B.

L(B) will contain exactly all accepting computation
histories for M on w.

M accepts w iff L(B) 6= ∅.
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More LBAs

It is not enough to show that B exists.

We must show that the mapping from 〈M,w〉 to 〈B〉 is
computable.

We are now going to describe the linear bounded machine,
〈B〉. It will be clear that indeed 〈B〉 is computable from
〈M,w〉.

Assume an accepting computation history is presented as a
string:

#
︸ ︷︷ ︸

C1

#
︸ ︷︷ ︸

C2

#
︸ ︷︷ ︸

C3

# · · · #
︸ ︷︷ ︸

Cℓ

# ,

with descriptions of configurations separated by #
delimiters.
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The LBA

The LBA, B, works as follows:
On input x, the LBA B:

breaks x according to the # delimiters

identifies strings C1, C2, . . . , Cℓ.

then checks that all the following conditions hold:
Each Ci are a configuration of M
C1 is the start configuration of M on w

Every Ci+1 follows from Ci according to M

Cℓ is an accepting configuration
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The LBA

Checking that each Ci is a configuration of M is easy:
All it means is that Ci includes exactly one q symbols.

Checking that C1 is the start configuration on w,
q0w1w2 · · ·wn, is easy, because the string w is “wired
into” B.

Checking that Cℓ is an accepting configuration is easy,
because Cℓ must include the accepting state qa.

The only hard part is checking that each Ci+1 follows
from Ci by M ’s transition function.
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The Hard Part

Checking that for all i, Ci+1 follows from Ci by M ’s transition
function:

Ci and Ci+1 almost identical, except for positions under
head and adjacent to head.

These positions should updated according to transition
function.

Do this verification by

zig-zagging between corresponding positions of Ci and
Ci+1.

use “dots” on tape to mark current position

all this can be done inside space allocated by input x.
Thus B is indeed a LBA.
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Important!

The LBA, B, accepts the string x if and only if x equals an
accepting computation history of M on w.

Therefore L(B) is either empty or a singleton {x}.

We construct B so that L(B) is non-empty iff M accepts w.

Thus 〈M,w〉 ∈ ATM iff 〈B〉 ∈ Non-EMPTYLBA.

Namely ATM≤mNon-EMPTYLBA, so
Non-EMPTYLBA /∈ R. ♠

BTW, is Non-EMPTYLBA ∈ RE?
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Unrestricted Grammars

Unrestricted grammars are similar to context free ones,
except left hand side of rules can be strings of variables
and terminal with at least one variable.

To non-deterministically generate a string according to
a given unrestricted grammar:

Start with the initial symbol
While the string contains at least one non-terminal:

Find a substring that matches the LHS of some
rule
Replace that substring with the RHS of the rule
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Unrestricted Grammars: {anbncn}

Generate the variable sequence L(ABC)n

S → LT |ǫ;
T → ABCT |ǫ;

Sort the {A,B,C} and get LAkBkCk.
BA → AB;
CB → BC;
CA → AC;

Replace the variables by terminals. LA → a;
aA → aa;
aB → ab;
bB → bb;
bC → bc;
cC → cc;
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Unrestricted Grammars

Let UG be the set of languages that can be described
by an Unrestricted Grammar:

UG = {L : ∃ Unrestricted Grammar
G such that L[G] = L}

Claim: UG = RE

To Prove:
Show UG ⊆ RE

Show RE ⊆ UG
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UG ⊆ RE

Given any Unrestricted Grammar G, we create a 2-tape
non-deterministic Turing Machine M that accepts L[G].

M maintains the input w on tape 1.

M initializes tape 2 to the initial symbol S.

In each iteration M does:
moves (non-deterministically) to some location on
tape 2

Selects non-deterministically a rule R.
Tries to apply rule R to that location.
If successful, tests if tape 1 and tape 2 are identical.
If identical, terminates and accepts.
Otherwise, starts a new iteration.
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RE ⊆ UG

Given any language L ∈ RE , let M be a deterministic
Turing Machine that accepts it. We can create an
Unrestricted Grammar G such that L[G] = L

Grammar: Generates a string
Turing Machine: Works from string to accept state
Two formalisms work in different directions

Simulating Turing Machine with a Grammar by
maintaining the TM configuration.

Idea: variables of G are the states Q

Maintain w[c], where w is the input and c is the
current configuration.
if c is an accepting configuration, replace it by ǫ.
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RE ⊆ UG

Generate the string w[q0w].
S → T [q0]; T → aTAa|ǫ
Aa[q0 → [q0Aa; Aab → bAa; Aa] → a]

Simulate TM M :
δ(q, a) = (q′, b, R) ⇒ qa → bq′;
δ(q, a) = (q′, b, L) ⇒ cqa → q′cb; [qa → [q′b
q] → q ]

Accepting: derive from w[uqav] only w.
qa → ELER

aEL → EL; [EL → ǫ
ERa → ER; ER] → ǫ
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Ladies and Gentlemen, Boys and Girls

We are about to begin the third part of the course:

Introduction to Computational Complexity
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Time Complexity

Consider
A = {0m1m |m ≥ 0}

Clearly this language is decidable.

Question: How much time does a single-tape TM need to
decide it?
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Time Complexity

M1: On input string w,

1. Scan across tape and reject if 0 is found to the right of a
1.

2. While both 0s and 1s appear on tape, repeat the
following:

scan across tape, crossing of a single 0 and a single
1 in each pass.

3. If no 0s and 1s remain, accept, otherwise reject.
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Analysis (1)

We consider the three stages separately. Let n denote the
input length.

1. Scan across tape and reject if 0 is found to the right of a
1. If not, return to starting point.

Scanning requires n steps.

Re-positioning head requires n steps.

Total is 2n = O(n) steps.
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Analysis (2)

2. While both 0s and 1s appear on tape, repeat the following

scan across tape, crossing of a single 0 and a single 1
in each pass.

Each scan requires O(n) steps.

Since each scan crosses off two symbols, the number
of scans is at most n/2.

Total number of steps is (n/2) ·O(n) = O(n2).
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Analysis (3)

3. If 0s still remain after all 1s have been crossed out, or
vice-versa, reject. Otherwise, if the tape is empty, accept.

Single scan requires O(n) steps.

Total is O(n) steps.
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Final Analysis

Total cost for stages

1. O(n)

2. O(n2)

3. O(n)

which is O(n2)
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Deterministic Time

Let M be a deterministic TM, and let

t : N −→ N

We say that M runs in time t(n) if

For every input x of length n,

the number of steps that M uses,

is at most t(n).
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Time Classes Definition

Let
t : N −→ N

be a function.

Definition:

DTIME(t(n)) = {L | L is a language, decided
by an O(t(n))-time DTM}

Note that t(n) run time is also required for strings that are
not in L.
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Do It Faster, Please

We have seen that

A = {0m1m|m ≥ 0},

A ∈ DTIME(n2).

Can we do better, i.e. faster?
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Home Improvement

M2: On input string w,

1. Scan across tape and reject if 0 is found to the right of a
1.

2. Repeat the following while both 0s and 1s appear on
tape:

2.1 scan across tape, checking whether total number of
0s plus 1s is even or odd. If odd, reject.

2.2 Scan across tape, crossing off every other 0 (starting
with the first), and every other 1 (starting with the
first) in each pass.

3. If no 0s or 1s remain, accept, otherwise reject.
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Analysis

First, we verify that M2 indeed halts.

on each scan in step 2.2,
The total number of 0s is cut in half,
and if there was a remainder, it is discarded.
Same for 1s.

Example: start with 13 0s and 13 1s,
first pass: 6 0s and 6 1s are left
second pass: 3 0s and 3 1s are left
third pass: one 0s and one 1s are left
then no 0s and 1s are left.
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Analysis

We now verify that M2 is correct.

Consider parity of 0s and 1s in 2.1,

example: start with 13 0s and 13 1s
odd, odd (13)
even, even (6)
odd, odd (3)
odd, odd (1)

The result, written right to left, is 1101, which is the
binary representation of 13.

Each pass checks equality of the next bit.

Inequality in any specific bit will be detected (total
number of 0s plus 1s will be odd).
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Running Time Analysis

M2: On input string w,

1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s appear on tape

2.1 scan across tape, checking whether total number of 0s
plus 1s is even or odd. If odd, reject.

2.2 Scan across tape, crossing off every other 0 (starting
with the first), and every other 1 (starting with the first).

3. If no 0s or 1s remain, accept, otherwise reject.
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Running Time Analysis (cont.)

M2: On input string w,

1. Scan across tape and reject if 0 is found to the right of a 1.
2. Repeat the following if both 0s and 1s appear on tape

2.1 scan across tape, checking whether total number of 0s and 1s is even or odd. If
odd, reject.

2.2 Scan across tape, crossing off every other 0 (starting with the first), and every other
1 (starting with the first).

3. If no 0s or 1s remain, accept, otherwise reject.

One pass in each stage (1, 2.1, 2.2, 3) takes O(n) time.

stage 1 and 3: each executed once

2.2 eliminates half of 0s and 1s: 1 + log2 n times

total for 2 is (1 + log2 n)O(n) = O(n log n).

grand total: O(n) +O(n log n) = O(n log n).
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Further Improvements, Anybody?

Question: Can the running time be made o(n log n)?

Answer: Not on a single tape TM (proof on board).
Question:

But why do we have to stick with
single tape TMs?

Answer: We don’t!
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A Two Tape TM

M3: on input string w

1. Scan across tape and reject if 0 is found to the right of a
1.

2. Scan across 0s to first 1, copying 0s to tape 2.

3. Scan across 1s on tape 1 until the end. For each 1,
cross off a 0. If no 0s left, reject.

4 If any 0s left, reject, otherwise accept.

Question: What is the running time?
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Complexity

Deciding {0n1n}:

single-tape M1: O(n2).

single-tape M2: O(n log n) (fastest possible!).

two-tape M3: O(n).

Important difference between complexity and computability:

Computability: all reasonable models equivalent
(Church-Turing)

Complexity: choice of model does affect run-time.

Q: By how much does model affect complexity?
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Models and Complexity

Let t(n) be a function where t(n) ≥ n, and let L ⊆ Σ∗ be a
language.
Claim: If a t(n)-time multitape TM decides L, then ∃ an
O(t2(n))-time single tape TM that decided L.

11 # a b a

11 ... ba ... x ...a

# x # ...
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Reminder: Simulating MultiTape TMs

11 # a b a

11 ... ba ... x ...a

# x # ...

On input w = w1 · · ·wn, single tape S:

puts on its tape #
•

w1 w2 · · ·wn#
• # • # · · ·#

scans its tape from first # to k + 1-st # to read symbols
under “virtual” heads.
rescans to write new symbols and move heads
if S tries to move virtual head onto #, then M takes
“tape fault” and re-arranges tape.
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Complexity of Simulation

For each step of M , S performs

two scans

up to k rightward shifts

On input of length n, M makes O(t(n)) many steps, so
active portion of each tape is O(t(n)) long.

Total number of steps S makes:

O(t(n)) steps to simulate one step of M .
Total simulation O(t(n))×O(t(n)) = O(t2(n)).
Initial tape arrangement O(n).
Grand total: O(n) +O(t2(n)) = O(t2(n)) steps,
under the reasonable assumption (why?) that t(n) > n.
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Time Classes Definition, Again

Let
t : N −→ N

be a function.

Definition:

DTIME(t(n)) = {L | L is a language, decided
by an O(t(n))-time TM}
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Relations among Time Classes

Let t1, t2 : N −→ N be two functions.

Claim: If t1(n) = O (t2(n)) then

DTIME (t1(n)) ⊆ DTIME (t2(n)) .

Stated informally, more time does not hurt.

But does it actually help?

Claim: If t1(n) = O (t2(n)/ log(n)) then

DTIME (t1(n)) ( DTIME (t2(n)) .

Informally, sufficiently more time does help.

Proofs – sophisticated diagonalizations (omitted).
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Non-Deterministic Time

Let N be a non-deterministic TM, and let

f : N −→ N

We say that N runs in time f(n) if

For every input x of length n,

the maximum number of steps that N uses,

on any branch of its computation tree on x,

is at most f(n).
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Deterministic vs. Non-Deterministic

f(n)

deterministic nondeterministic

f(n)

Notice that non-accepting branches must reject within f(n)
many steps.
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Models and Complexity

Claim: Suppose N is a nondeterministic TM that runs in
time t(n) and decides the language L.

Then there is an 2O(t(n))-time deterministic TM, D,
that decided L.

Note contrast with multi-tape result.
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Simulation

Let N be a non-deterministic TM running in t(n) time. Want
to describe the deterministic TM, D, simulating N .

Basic idea of simulation:

D tries all possible branches.

If D finds any accepting state, it accepts.

If all branches reject, D rejects.

Notice N has no looping branches, so exactly one of
two possibilities must occur.
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Simulation Details

N ’s computation is a tree:

root is starting configuration,

each node has bounded fanout ≤ b (why?),

each branch has length ≤ t(n),

total number of leaves at most bt(n),

total number of nodes in tree O
(
bt(n)

)
,

time to arrive from root to any node is O(t(n)).

=⇒ Time to visit all nodes is

O
(

t(n)× bt(n)
)

= O
(

2O(t(n))
)

.
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Remark

Breadth-first search used in simulation

Inefficiently traverses from root to visit each node.

Can be improved upon by using depth-first search (why
is it OK now?) or other tree search strategies.

Still, doing this may save constants, but nothing
substantial (why?)
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Remark

11 ... ba ... 1 ...#

input tape
(never altered)

simulation
tape

address
tape

2 3 3

Simulation uses three-tape machine.

Single-tape simulation: (2O(t(n)))2 = 2O(2t(n)) = 2O(t(n)).
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Important Distinction

At most polynomial gap in time to perform tasks
between different deterministic models (single- vs.
multi-tape TMs, TM vs. RAM, etc.)

compared to

Apparently exponential gap in time to perform tasks
between deterministic and non-deterministic models.
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The Good, the Bad, and the Ugly

Complexity differences:
Polynomial is small; Exponential is large

10 20 30 40 50 60

n .00001 .00002 .00003 .00004 .00005 .00006

second second second second second second

n2 .00001 .00004 .00009 .00016 .00025 .00036

second second second second second second

n3 .00001 .00008 .027 .064 .125 .216

second second second second second second

n5 .1 3.2 24.3 1.7 5.2 13.0

second seconds seconds minute minutes minutes

2
n .001 1.0 17.9 12.7 35.7 366

second second minutes days years centuries

3
n .059 58 6.5 3855 2 · 10

8
1.3 · 10

13

second minutes years centuries centuries centuries
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Polynomial is Good, Exponential is Bad

Claim: All “reasonable” models of computation are
polynomially equivalent.
Any one can simulate another with only polynomial
increase in running time.

Question: Is a given problem solvable in

Linear time? model-specific.

Polynomial time? model-independent.

We are interested in computation, not in models per se!
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