
Critical CS Questions

What is a computer?
And What is aComputation?

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1



Critical CS Questions

What is a computer?
And What is aComputation?

real computers too complex for any theory

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1



Critical CS Questions

What is a computer?
And What is aComputation?

real computers too complex for any theory

need manageable mathematical abstraction

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1



Critical CS Questions

What is a computer?
And What is aComputation?

real computers too complex for any theory

need manageable mathematical abstraction

idealized models: accurate in some ways, but not
in all details
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Finite Automata
formal definition of finite automata
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Finite Automata
formal definition of finite automata

deterministic vs. non-deterministic finite
automata

regular languages

operations on regular languages

regular expressions

pumping lemma
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Example: A One-Way Automatic Door
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Example: A One-Way Automatic Door

front
pad

rear
pad

door

open when person approaches

hold open until person clears

don’t open when someone standing behind door
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The Automatic Door as DFA
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The Automatic Door as DFA

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

States:
OPEN
CLOSED

Sensor:
FRONT: someone on front pad
REAR: someone on rear pad
BOTH: someone(s) on both pads
NEITHERno one on either pad.
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The Automatic Door as DFA

DFA is DeterministicFinite Automata

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

neither front rear both
closed closed open closed closed
open closed open open open
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DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1 The machine

M1:

states: q1, q2, andq3.
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DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1 The machine

M1:

states: q1, q2, andq3.

startstate:q1 (arrow from “outside”).
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DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.
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Informal Definition - Example
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What happens on input strings

1101
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Informal Definition - Example

q1

0

q
2 3q

1
1 0

0,1

What happens on input strings

1101

0010

01100

In general?!
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Informal Definition

q1

0

q
2 3q

1
1 0

0,1

This DFA accepts

all input strings that end with a 1

all input strings that contain at least one 1, and
end with an even number of 0’s

no other strings
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Languages and Alphabets

An alphabetΣ is a finite set of letters.

Σ = {a, b, c, . . . , z} – the English alphabet.

Σ = {α, β, γ, . . . , ζ} – the Greek alphabet.

Σ = {0, 1} – the binary alphabet.

Σ = {0, 1, . . . , 9} – the digital alphabet.
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Languages and Alphabets

An alphabetΣ is a finite set of letters.

Σ = {a, b, c, . . . , z} – the English alphabet.

Σ = {α, β, γ, . . . , ζ} – the Greek alphabet.

Σ = {0, 1} – the binary alphabet.

Σ = {0, 1, . . . , 9} – the digital alphabet.

The collection of all strings overΣ is denoted byΣ∗.

For the binary alphabet,ε, 1, 0, 000000000,
1111111000 are all members ofΣ∗.
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Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11



Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11



Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11



Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

A = {w|w has at most seventeen 0’s}.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11



Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

A = {w|w has at most seventeen 0’s}.
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Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

A = {w|w has at most seventeen 0’s}.

B = {0n1n|n ≥ 0}.

C = {w|w has an equal number of 0’s and 1’s}.
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Languages and DFA

Definition: L(M), thelanguage of a DFAM , is the
set of stringsL thatM accepts,L(M) = L.
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Note that
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WhatlanguagedoesM accept if it acceptsno strings?
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Languages and DFA

Definition: L(M), thelanguage of a DFAM , is the
set of stringsL thatM accepts,L(M) = L.

Note that

M may acceptmany strings, but

M accepts onlyone language.

WhatlanguagedoesM accept if it acceptsno strings?

A language is calledregularif some deterministic
finite automaton accepts it.
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Formal Definitions
A deterministic finite automaton(DFA) is a 5-tuple
(Q,Σ, δ, q0, F ), where

Q is a finite set called thestates,

Σ is a finite set called thealphabet,

δ : Q× Σ → Q is thetransition function,

q0 ∈ Q is thestart state, and

F ⊆ Q is the set ofaccept states.
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Back toM1

q1

0

q
2 3q

1
1 0

0,1

M1 = (Q,Σ, δ, q1, F ) where

Q = {q1, q2, q3}, Σ = {0, 1},
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q
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1
1 0

0,1

M1 = (Q,Σ, δ, q1, F ) where

Q = {q1, q2, q3}, Σ = {0, 1},

the transition functionδ is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2
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Back toM1

q1

0

q
2 3q

1
1 0

0,1

M1 = (Q,Σ, δ, q1, F ) where

Q = {q1, q2, q3}, Σ = {0, 1},

the transition functionδ is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

q1 is the start state, andF= {q2}.
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Another Example

q1

q
2

a b

a

a a

a

b

b

b

b

r1

s

r2
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And Yet Another Example

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 16



A FormalModel of Computation

LetM = (Q,Σ, δ, q0, F ) be a DFA, and

letw = w1w2 · · ·wn be a string overΣ.

We say thatM acceptsw if there is asequence of
statesr0, . . . , rn (ri ∈ Q) such that

r0 = q0
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LetM = (Q,Σ, δ, q0, F ) be a DFA, and

letw = w1w2 · · ·wn be a string overΣ.

We say thatM acceptsw if there is asequence of
statesr0, . . . , rn (ri ∈ Q) such that

r0 = q0

δ(ri, wi+1) = ri+1, 0 ≤ i < n
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A FormalModel of Computation

LetM = (Q,Σ, δ, q0, F ) be a DFA, and

letw = w1w2 · · ·wn be a string overΣ.

We say thatM acceptsw if there is asequence of
statesr0, . . . , rn (ri ∈ Q) such that

r0 = q0

δ(ri, wi+1) = ri+1, 0 ≤ i < n

rn ∈ F
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The Regular Operations

LetA andB be languages.

Theunionoperation:

A∪B = {x|x ∈ A or x ∈ B}

Theconcatenationoperation:

A◦B = {xy|x ∈ A andy ∈ B}

Thestaroperation:

A∗ = {x1x2 . . . xk|k ≥ 0 and eachxi ∈ A}
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The Regular Operations – Examples

LetA= {good, bad} andB = {boy, girl}.

Union
A ∪ B = {good, bad, boy, girl}

Concatenation

A ◦B = {goodboy, goodgirl, badboy, badgirl}

Star

A∗ = {ε, good, bad, goodgood, goodbad, badbad, badgood, . . .}
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Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.
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Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:

someM1 acceptsA1

someM2 acceptsA2

constructM that acceptsA1 ∪ A2.
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constructM that acceptsA1 ∪ A2.

Attempted Proof Idea:

first simulateM1, and

if M1 doesn’t accept, then simulateM2.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20



Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:
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someM2 acceptsA2

constructM that acceptsA1 ∪ A2.

Attempted Proof Idea:

first simulateM1, and

if M1 doesn’t accept, then simulateM2.
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Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:

someM1 acceptsA1

someM2 acceptsA2

constructM that acceptsA1 ∪ A2.

Attempted Proof Idea:

first simulateM1, and

if M1 doesn’t accept, then simulateM2.

What’swrongwith this?
Fix: Simulate both machinessimultaneously.
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Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.
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Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.
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SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))
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SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)
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Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = {(r1, r2)|r1 ∈ F1 or r2 ∈ F2}. ♣
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Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = {(r1, r2)|r1 ∈ F1 or r2 ∈ F2}. ♣

(hey, why not chooseF = F1 × F2?)
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What About Concatenation?

Thm: If L1, L2 are regular languages, so isL1 ◦ L2.

Example: L1= {good, bad} andL2 = {boy, girl}.

L1 ◦ L2 = {goodboy, goodgirl, badboy, badgirl}
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What About Concatenation?

Thm: If L1, L2 are regular languages, so isL1 ◦ L2.

Example: L1= {good, bad} andL2 = {boy, girl}.

L1 ◦ L2 = {goodboy, goodgirl, badboy, badgirl}

This is much harder to prove.

Idea: SimulateM1 for a while, thenswitchtoM2.
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What About Concatenation?

Thm: If L1, L2 are regular languages, so isL1 ◦ L2.

Example: L1= {good, bad} andL2 = {boy, girl}.

L1 ◦ L2 = {goodboy, goodgirl, badboy, badgirl}

This is much harder to prove.

Idea: SimulateM1 for a while, thenswitchtoM2.

Problem: But whendo you switch?

This leads us intonon-determinism.
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