What is a computer? And What is a Computation?

What is a computer? And What is a Computation?

real computers too complex for any theory

What is a computer? And What is a Computation?

- real computers too complex for any theory
- need manageable mathematical abstraction

What is a computer? And What is a Computation?

- real computers too complex for any theory
- need manageable mathematical abstraction
- idealized models: accurate in some ways, but not in all details

• formal definition of finite automata

- formal definition of finite automata
- deterministic vs. non-deterministic finite automata

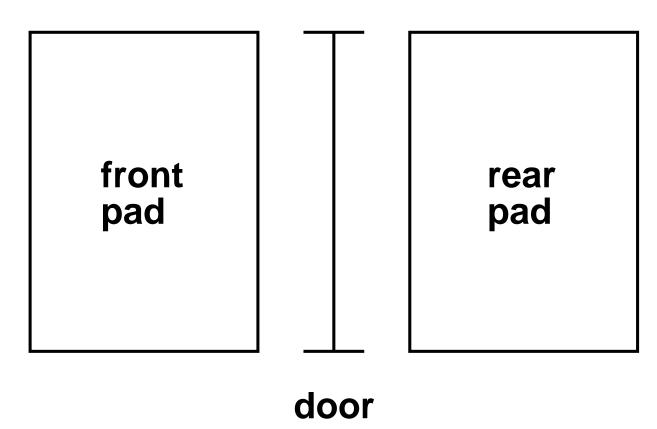
- formal definition of finite automata
- deterministic vs. non-deterministic finite automata
- regular languages

- formal definition of finite automata
- deterministic vs. non-deterministic finite automata
- regular languages
- operations on regular languages

- formal definition of finite automata
- deterministic vs. non-deterministic finite automata
- regular languages
- operations on regular languages
- regular expressions

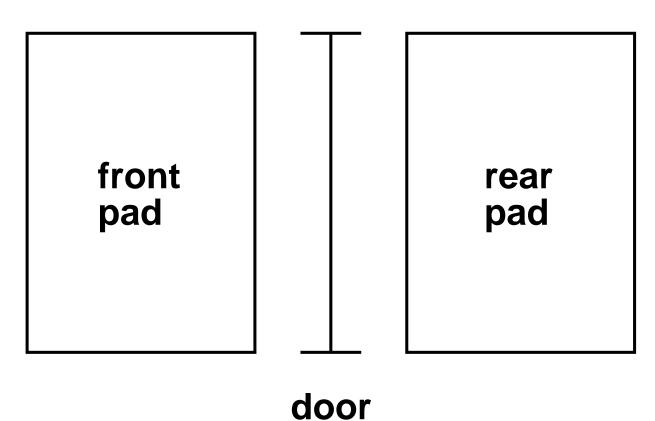
- formal definition of finite automata
- deterministic vs. non-deterministic finite automata
- regular languages
- operations on regular languages
- regular expressions
- pumping lemma

Example: A One-Way Automatic Door



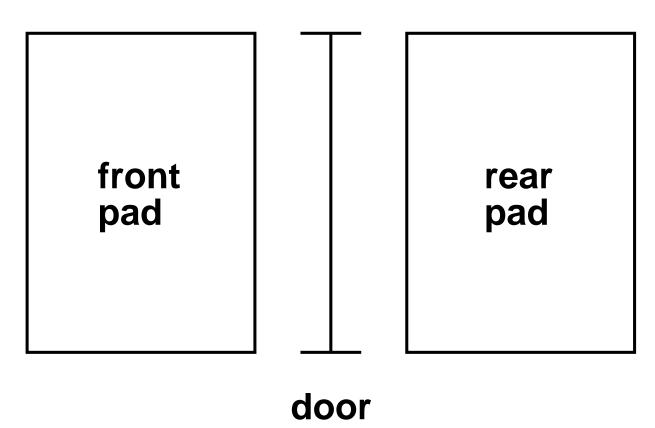
open when person approaches

Example: A One-Way Automatic Door

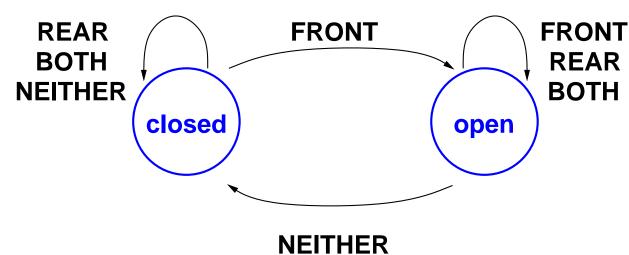


- open when person approaches
- hold open until person clears

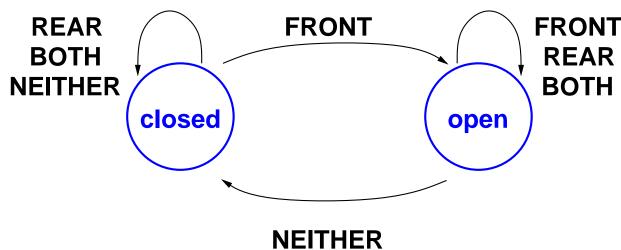
Example: A One-Way Automatic Door



- open when person approaches
- hold open until person clears
- don't open when someone standing behind door



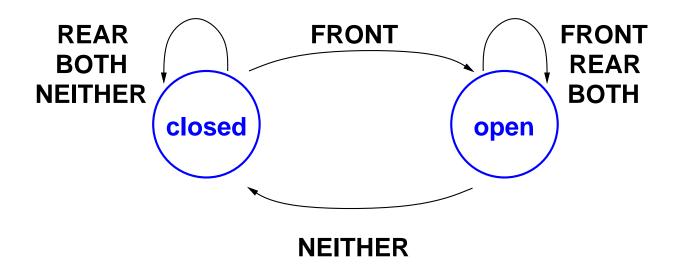
- States:
 - OPEN
 - CLOSED



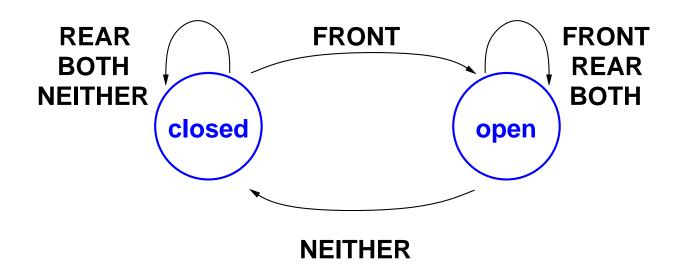
- States:
 - OPEN
 - CLOSED
- Sensor:
 - FRONT: someone on front pad
 - REAR: someone on rear pad
 - BOTH: someone(s) on both pads
 - NEITHER no one on either pad.

DFA is Deterministic Finite Automata

DFA is Deterministic Finite Automata

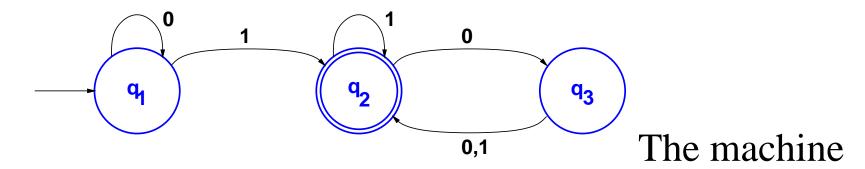


DFA is Deterministic Finite Automata



	neither	front	rear	both
closed	closed	open	closed	closed
open	closed	open	open	open

DFA: Informal Definition



 M_1 :

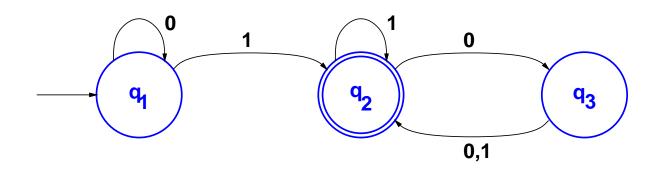
• states: q_1, q_2 , and q_3 .

DFA: Informal Definition

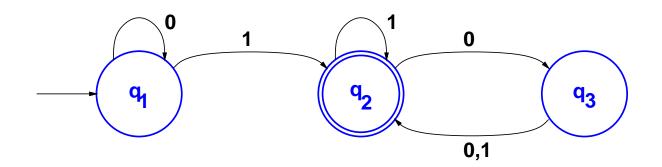


M_1 :

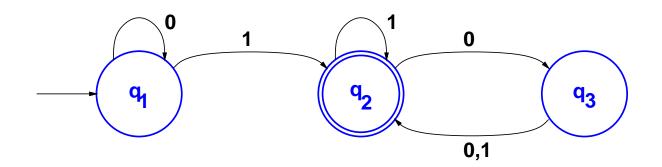
- states: q_1, q_2 , and q_3 .
- start state: q_1 (arrow from "outside").



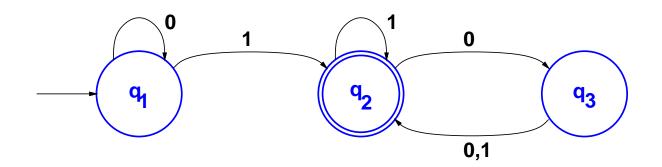
- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.



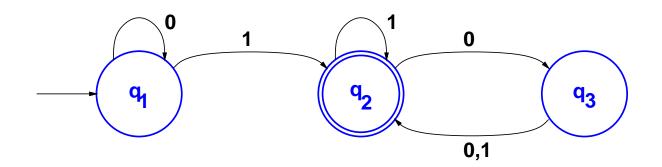
- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.
- After reading last symbol, DFA produces output:
 - accept if DFA is an accepting state.
 - reject otherwise.



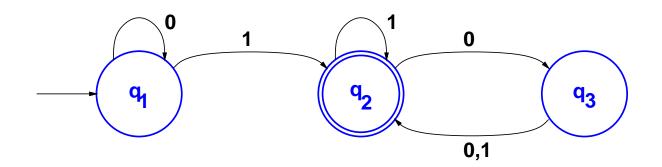
- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.
- After reading last symbol, DFA produces output:
 - accept if DFA is an accepting state.
 - reject otherwise.



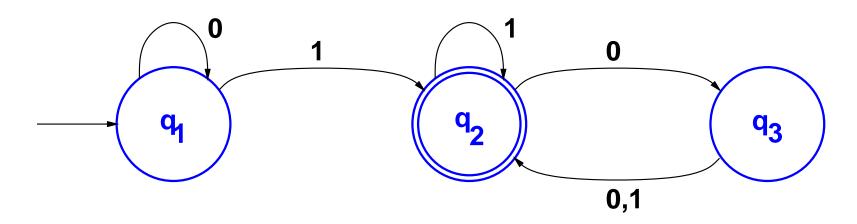
- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.
- After reading last symbol, DFA produces output:
 - accept if DFA is an accepting state.
 - reject otherwise.



- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.
- After reading last symbol, DFA produces output:
 - accept if DFA is an accepting state.
 - reject otherwise.

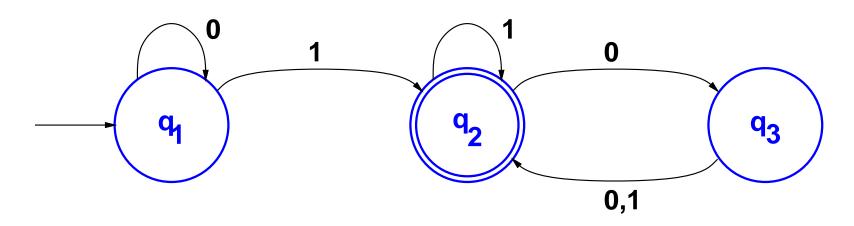


- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.
- After reading last symbol, DFA produces output:
 - accept if DFA is an accepting state.
 - reject otherwise.



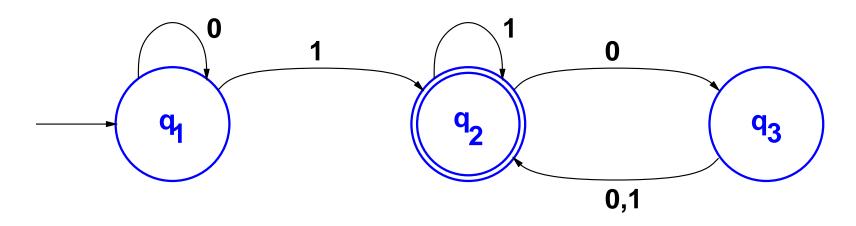
What happens on input strings

1101



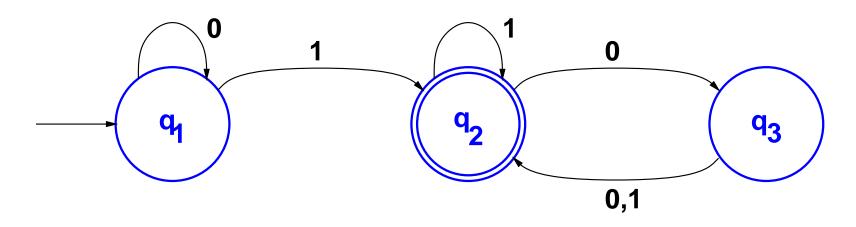
What happens on input strings

- **•** 1101
- 0010



What happens on input strings

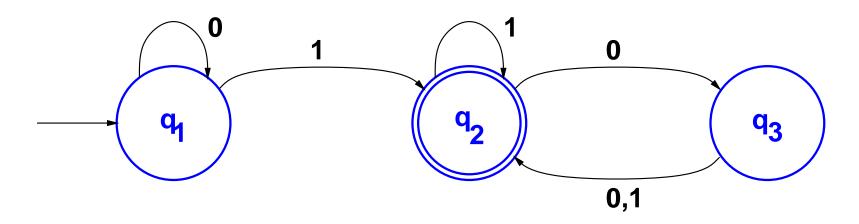
- **•** 1101
- 0010
- 01100



What happens on input strings

- **•** 1101
- **•** 0010
- 01100
- In general?!

Informal Definition



This DFA accepts

- all input strings that end with a 1
- all input strings that contain at least one 1, and end with an even number of 0's
- no other strings

Languages and Alphabets

An alphabet Σ is a finite set of letters.

- $\Sigma = \{a, b, c, \dots, z\}$ the English alphabet.
- $\Sigma = \{\alpha, \beta, \gamma, \dots, \zeta\}$ the Greek alphabet.
- $\Sigma = \{0, 1\}$ the binary alphabet.
- $\Sigma = \{0, 1, \dots, 9\}$ the digital alphabet.

Languages and Alphabets

An alphabet Σ is a finite set of letters.

- $\Sigma = \{a, b, c, \dots, z\}$ the English alphabet.
- $\Sigma = \{\alpha, \beta, \gamma, \dots, \zeta\}$ the Greek alphabet.
- $\Sigma = \{0, 1\}$ the binary alphabet.
- $\Sigma = \{0, 1, \dots, 9\}$ the digital alphabet.

The collection of all strings over Σ is denoted by Σ^* .

Languages and Alphabets

An alphabet Σ is a finite set of letters.

- $\Sigma = \{a, b, c, \dots, z\}$ the English alphabet.
- $\Sigma = \{\alpha, \beta, \gamma, \dots, \zeta\}$ the Greek alphabet.
- $\Sigma = \{0, 1\}$ the binary alphabet.
- $\Sigma = \{0, 1, \dots, 9\}$ the digital alphabet.

The collection of all strings over Σ is denoted by Σ^* .

For the binary alphabet, ε , 1, 0, 000000000, 111111111000 are all members of Σ^* .

Languages and Examples

A language over Σ is a subset $L \subseteq \Sigma^*$. For example

Modern English.

Languages and Examples

A language over Σ is a subset $L \subseteq \Sigma^*$. For example

- Modern English.
- Ancient Greek.

- Modern English.
- Ancient Greek.
- All prime numbers, written using digits.

- Modern English.
- Ancient Greek.
- All prime numbers, written using digits.
- $A = \{w | w \text{ has at most seventeen 0's} \}.$

- Modern English.
- Ancient Greek.
- All prime numbers, written using digits.
- $A = \{w | w \text{ has at most seventeen 0's} \}.$
- $B = \{0^n 1^n | n \ge 0\}.$

- Modern English.
- Ancient Greek.
- All prime numbers, written using digits.
- $A = \{w | w \text{ has at most seventeen 0's} \}.$
- $B = \{0^n 1^n | n \ge 0\}.$
- $C = \{w | w \text{ has an equal number of 0's and 1's} \}.$

Definition: L(M), the language of a DFA M, is the set of strings L that M accepts, L(M) = L.

Definition: L(M), the language of a DFA M, is the set of strings L that M accepts, L(M) = L.

Note that

- M may accept many strings, but
- M accepts only one language.

Definition: L(M), the language of a DFA M, is the set of strings L that M accepts, L(M) = L.

Note that

- M may accept many strings, but
- M accepts only one language.

What language does M accept if it accepts no strings?

Definition: L(M), the language of a DFA M, is the set of strings L that M accepts, L(M) = L.

Note that

- M may accept many strings, but
- M accepts only one language.

What language does M accept if it accepts no strings?

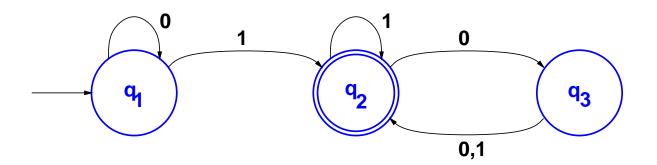
A language is called regular if some deterministic finite automaton accepts it.

Formal Definitions

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- ightharpoonup is a finite set called the alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states.

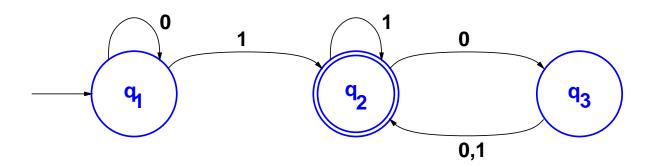
Back to M_1



$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
 where

•
$$Q = \{q_1, q_2, q_3\}, \Sigma = \{0, 1\},$$

Back to M_1



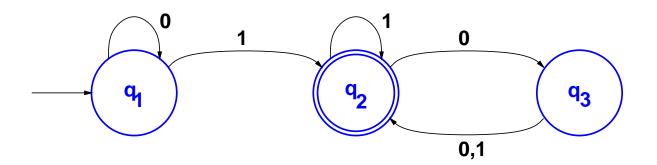
$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
 where

•
$$Q = \{q_1, q_2, q_3\}, \Sigma = \{0, 1\},$$

• the transition function δ is

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Back to M_1



$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
 where

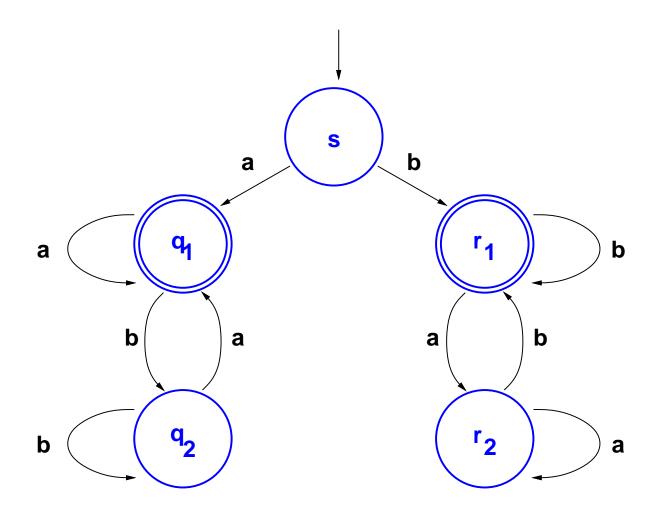
•
$$Q = \{q_1, q_2, q_3\}, \Sigma = \{0, 1\},$$

• the transition function δ is

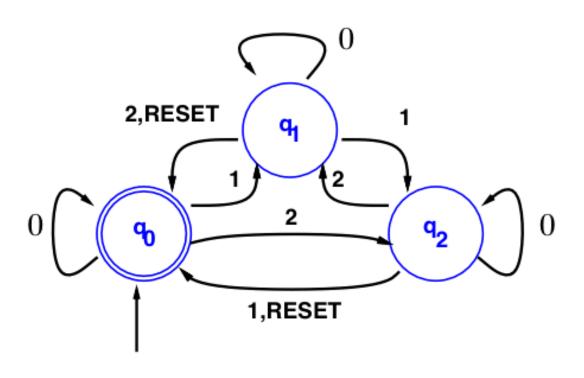
$$egin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \\ \hline \end{array}$$

• q_1 is the start state, and $F = \{q_2\}$.

Another Example



And Yet Another Example



A Formal Model of Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and
- let $w = w_1 w_2 \cdots w_n$ be a string over Σ .

We say that M accepts w if there is a sequence of states r_0, \ldots, r_n $(r_i \in Q)$ such that

•
$$r_0 = q_0$$

A Formal Model of Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and
- let $w = w_1 w_2 \cdots w_n$ be a string over Σ .

We say that M accepts w if there is a sequence of states r_0, \ldots, r_n $(r_i \in Q)$ such that

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}, 0 \le i < n$

A Formal Model of Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and
- let $w = w_1 w_2 \cdots w_n$ be a string over Σ .

We say that M accepts w if there is a sequence of states r_0, \ldots, r_n $(r_i \in Q)$ such that

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}, 0 \le i < n$
- \bullet $r_n \in F$

The Regular Operations

Let *A* and *B* be languages.

The union operation:

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

The concatenation operation:

$$A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

The star operation:

$$A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$$

The Regular Operations – Examples

Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

Union

$$A \cup B = \{good, bad, boy, girl\}$$

Concatenation

$$A \circ B = \{goodboy, goodgirl, badboy, badgirl\}$$

Star

 $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badbad}, \text{badgood}, \ldots\}$

If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Approach to Proof:

- some M_1 accepts A_1
- some M_2 accepts A_2
- construct M that accepts $A_1 \cup A_2$.

If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Approach to Proof:

- some M_1 accepts A_1
- some M_2 accepts A_2
- construct M that accepts $A_1 \cup A_2$.

Attempted Proof Idea:

- first simulate M_1 , and
- if M_1 doesn't accept, then simulate M_2 .

If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Approach to Proof:

- some M_1 accepts A_1
- some M_2 accepts A_2
- construct M that accepts $A_1 \cup A_2$.

Attempted Proof Idea:

- first simulate M_1 , and
- if M_1 doesn't accept, then simulate M_2 .

What's wrong with this?

If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Approach to Proof:

- some M_1 accepts A_1
- some M_2 accepts A_2
- construct M that accepts $A_1 \cup A_2$.

Attempted Proof Idea:

- first simulate M_1 , and
- if M_1 doesn't accept, then simulate M_2 .

What's wrong with this?

Fix: Simulate both machines simultaneously.

- Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1 ,
- and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ accepts L_2 .

- Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1 ,
- and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ accepts L_2 .

- $Q = Q_1 \times Q_2.$
- Σ is the same.

- Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1 ,
- and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ accepts L_2 .

- $Q = Q_1 \times Q_2.$
- \bullet Σ is the same.
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$, $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

- Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1 ,
- and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ accepts L_2 .

- $Q = Q_1 \times Q_2.$
- \bullet is the same.
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$, $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

- Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1 ,
- and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ accepts L_2 .

- $Q = Q_1 \times Q_2.$
- \bullet is the same.
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$, $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

- Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1 ,
- and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ accepts L_2 .

Define M as follows (M will accept $L_1 \cup L_2$):

- $Q = Q_1 \times Q_2.$
- \bullet is the same.
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$, $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

(hey, why not choose $F = F_1 \times F_2$?)

What About Concatenation?

Thm: If L_1 , L_2 are regular languages, so is $L_1 \circ L_2$.

Example: $L_1 = \{good, bad\}$ and $L_2 = \{boy, girl\}$.

 $L_1 \circ L_2 = \{\text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl}\}$

What About Concatenation?

Thm: If L_1 , L_2 are regular languages, so is $L_1 \circ L_2$.

Example: $L_1 = \{good, bad\}$ and $L_2 = \{boy, girl\}$.

 $L_1 \circ L_2 = \{\text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl}\}$

This is much harder to prove.

Idea: Simulate M_1 for a while, then switch to M_2 .

What About Concatenation?

Thm: If L_1 , L_2 are regular languages, so is $L_1 \circ L_2$.

Example: $L_1 = \{good, bad\}$ and $L_2 = \{boy, girl\}$.

 $L_1 \circ L_2 = \{\text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl}\}$

This is much harder to prove.

Idea: Simulate M_1 for a while, then switch to M_2 .

Problem: But when do you switch?

This leads us into non-determinism.