
Critical CS Questions

What is a computer?
And What is aComputation?

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1

Critical CS Questions

What is a computer?
And What is aComputation?

real computers too complex for any theory

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1

Critical CS Questions

What is a computer?
And What is aComputation?

real computers too complex for any theory

need manageable mathematical abstraction

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1

Critical CS Questions

What is a computer?
And What is aComputation?

real computers too complex for any theory

need manageable mathematical abstraction

idealized models: accurate in some ways, but not
in all details

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1

Finite Automata
formal definition of finite automata

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

Finite Automata
formal definition of finite automata

deterministic vs. non-deterministic finite
automata

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

Finite Automata
formal definition of finite automata

deterministic vs. non-deterministic finite
automata

regular languages

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

Finite Automata
formal definition of finite automata

deterministic vs. non-deterministic finite
automata

regular languages

operations on regular languages

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

Finite Automata
formal definition of finite automata

deterministic vs. non-deterministic finite
automata

regular languages

operations on regular languages

regular expressions

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

Finite Automata
formal definition of finite automata

deterministic vs. non-deterministic finite
automata

regular languages

operations on regular languages

regular expressions

pumping lemma

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

Example: A One-Way Automatic Door

front
pad

rear
pad

door

open when person approaches

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 3

Example: A One-Way Automatic Door

front
pad

rear
pad

door

open when person approaches

hold open until person clears

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 3

Example: A One-Way Automatic Door

front
pad

rear
pad

door

open when person approaches

hold open until person clears

don’t open when someone standing behind door

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 3

The Automatic Door as DFA

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

States:
OPEN
CLOSED

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 4

The Automatic Door as DFA

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

States:
OPEN
CLOSED

Sensor:
FRONT: someone on front pad
REAR: someone on rear pad
BOTH: someone(s) on both pads
NEITHERno one on either pad.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 4

The Automatic Door as DFA

DFA is DeterministicFinite Automata

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 5

The Automatic Door as DFA

DFA is DeterministicFinite Automata

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 5

The Automatic Door as DFA

DFA is DeterministicFinite Automata

closed open

FRONT

NEITHER

FRONT
REAR
BOTH

REAR
BOTH

NEITHER

neither front rear both
closed closed open closed closed
open closed open open open

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 5

DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1 The machine

M1:

states: q1, q2, andq3.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 6

DFA: Informal Definition

q1

0

q
2 3q

1
1 0

0,1 The machine

M1:

states: q1, q2, andq3.

startstate:q1 (arrow from “outside”).

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 6

DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.

After reading last symbol, DFA produces output:
acceptif DFA is an accepting state.
rejectotherwise.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.

After reading last symbol, DFA produces output:
acceptif DFA is an accepting state.
rejectotherwise.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.

After reading last symbol, DFA produces output:
acceptif DFA is an accepting state.
rejectotherwise.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.

After reading last symbol, DFA produces output:
acceptif DFA is an accepting state.
rejectotherwise.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

DFA: Informal Definition (cont.)

q1

0

q
2 3q

1
1 0

0,1

On an input string
DFA begins in start stateq1
after reading each symbol, DFA makes
state transitionwith matching label.

After reading last symbol, DFA produces output:
acceptif DFA is an accepting state.
rejectotherwise.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

Informal Definition - Example

q1

0

q
2 3q

1
1 0

0,1

What happens on input strings

1101

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 8

Informal Definition - Example

q1

0

q
2 3q

1
1 0

0,1

What happens on input strings

1101

0010

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 8

Informal Definition - Example

q1

0

q
2 3q

1
1 0

0,1

What happens on input strings

1101

0010

01100

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 8

Informal Definition - Example

q1

0

q
2 3q

1
1 0

0,1

What happens on input strings

1101

0010

01100

In general?!

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 8

Informal Definition

q1

0

q
2 3q

1
1 0

0,1

This DFA accepts

all input strings that end with a 1

all input strings that contain at least one 1, and
end with an even number of 0’s

no other strings

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 9

Languages and Alphabets

An alphabetΣ is a finite set of letters.

Σ = {a, b, c, . . . , z} – the English alphabet.

Σ = {α, β, γ, . . . , ζ} – the Greek alphabet.

Σ = {0, 1} – the binary alphabet.

Σ = {0, 1, . . . , 9} – the digital alphabet.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 10

Languages and Alphabets

An alphabetΣ is a finite set of letters.

Σ = {a, b, c, . . . , z} – the English alphabet.

Σ = {α, β, γ, . . . , ζ} – the Greek alphabet.

Σ = {0, 1} – the binary alphabet.

Σ = {0, 1, . . . , 9} – the digital alphabet.

The collection of all strings overΣ is denoted byΣ∗.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 10

Languages and Alphabets

An alphabetΣ is a finite set of letters.

Σ = {a, b, c, . . . , z} – the English alphabet.

Σ = {α, β, γ, . . . , ζ} – the Greek alphabet.

Σ = {0, 1} – the binary alphabet.

Σ = {0, 1, . . . , 9} – the digital alphabet.

The collection of all strings overΣ is denoted byΣ∗.

For the binary alphabet,ε, 1, 0, 000000000,
1111111000 are all members ofΣ∗.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 10

Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

A = {w|w has at most seventeen 0’s}.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

A = {w|w has at most seventeen 0’s}.

B = {0n1n|n ≥ 0}.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Languages and Examples

A languageoverΣ is a subsetL ⊆ Σ∗. For example

Modern English.

Ancient Greek.

All prime numbers, written using digits.

A = {w|w has at most seventeen 0’s}.

B = {0n1n|n ≥ 0}.

C = {w|w has an equal number of 0’s and 1’s}.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Languages and DFA

Definition: L(M), thelanguage of a DFAM , is the
set of stringsL thatM accepts,L(M) = L.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 12

Languages and DFA

Definition: L(M), thelanguage of a DFAM , is the
set of stringsL thatM accepts,L(M) = L.

Note that

M may acceptmany strings, but

M accepts onlyone language.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 12

Languages and DFA

Definition: L(M), thelanguage of a DFAM , is the
set of stringsL thatM accepts,L(M) = L.

Note that

M may acceptmany strings, but

M accepts onlyone language.

WhatlanguagedoesM accept if it acceptsno strings?

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 12

Languages and DFA

Definition: L(M), thelanguage of a DFAM , is the
set of stringsL thatM accepts,L(M) = L.

Note that

M may acceptmany strings, but

M accepts onlyone language.

WhatlanguagedoesM accept if it acceptsno strings?

A language is calledregularif some deterministic
finite automaton accepts it.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 12

Formal Definitions
A deterministic finite automaton(DFA) is a 5-tuple
(Q,Σ, δ, q0, F), where

Q is a finite set called thestates,

Σ is a finite set called thealphabet,

δ : Q× Σ → Q is thetransition function,

q0 ∈ Q is thestart state, and

F ⊆ Q is the set ofaccept states.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 13

Back toM1

q1

0

q
2 3q

1
1 0

0,1

M1 = (Q,Σ, δ, q1, F) where

Q = {q1, q2, q3}, Σ = {0, 1},

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 14

Back toM1

q1

0

q
2 3q

1
1 0

0,1

M1 = (Q,Σ, δ, q1, F) where

Q = {q1, q2, q3}, Σ = {0, 1},

the transition functionδ is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 14

Back toM1

q1

0

q
2 3q

1
1 0

0,1

M1 = (Q,Σ, δ, q1, F) where

Q = {q1, q2, q3}, Σ = {0, 1},

the transition functionδ is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

q1 is the start state, andF= {q2}.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 14

Another Example

q1

q
2

a b

a

a a

a

b

b

b

b

r1

s

r2

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 15

And Yet Another Example

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 16

A FormalModel of Computation

LetM = (Q,Σ, δ, q0, F) be a DFA, and

letw = w1w2 · · ·wn be a string overΣ.

We say thatM acceptsw if there is asequence of
statesr0, . . . , rn (ri ∈ Q) such that

r0 = q0

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 17

A FormalModel of Computation

LetM = (Q,Σ, δ, q0, F) be a DFA, and

letw = w1w2 · · ·wn be a string overΣ.

We say thatM acceptsw if there is asequence of
statesr0, . . . , rn (ri ∈ Q) such that

r0 = q0

δ(ri, wi+1) = ri+1, 0 ≤ i < n

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 17

A FormalModel of Computation

LetM = (Q,Σ, δ, q0, F) be a DFA, and

letw = w1w2 · · ·wn be a string overΣ.

We say thatM acceptsw if there is asequence of
statesr0, . . . , rn (ri ∈ Q) such that

r0 = q0

δ(ri, wi+1) = ri+1, 0 ≤ i < n

rn ∈ F

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 17

The Regular Operations

LetA andB be languages.

Theunionoperation:

A∪B = {x|x ∈ A or x ∈ B}

Theconcatenationoperation:

A◦B = {xy|x ∈ A andy ∈ B}

Thestaroperation:

A∗ = {x1x2 . . . xk|k ≥ 0 and eachxi ∈ A}

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 18

The Regular Operations – Examples

LetA= {good, bad} andB = {boy, girl}.

Union
A ∪ B = {good, bad, boy, girl}

Concatenation

A ◦B = {goodboy, goodgirl, badboy, badgirl}

Star

A∗ = {ε, good, bad, goodgood, goodbad, badbad, badgood, . . .}

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 19

Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20

Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:

someM1 acceptsA1

someM2 acceptsA2

constructM that acceptsA1 ∪ A2.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20

Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:

someM1 acceptsA1

someM2 acceptsA2

constructM that acceptsA1 ∪ A2.

Attempted Proof Idea:

first simulateM1, and

if M1 doesn’t accept, then simulateM2.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20

Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:

someM1 acceptsA1

someM2 acceptsA2

constructM that acceptsA1 ∪ A2.

Attempted Proof Idea:

first simulateM1, and

if M1 doesn’t accept, then simulateM2.

What’swrongwith this?

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20

Claim: Closure Under Union
If A1 andA2 are regular languages, so isA1 ∪ A2.

Approach to Proof:

someM1 acceptsA1

someM2 acceptsA2

constructM that acceptsA1 ∪ A2.

Attempted Proof Idea:

first simulateM1, and

if M1 doesn’t accept, then simulateM2.

What’swrongwith this?
Fix: Simulate both machinessimultaneously.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20

Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = {(r1, r2)|r1 ∈ F1 or r2 ∈ F2}. ♣

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

Closure Under Union:Correct Proof
SupposeM1 = (Q1,Σ, δ1, q1, F1) acceptsL1,

andM2 = (Q2,Σ, δ2, q2, F2) acceptsL2.

DefineM as follows (M will acceptL1 ∪ L2):

Q = Q1 ×Q2.

Σ is the same.

For each(r1, r2) ∈ Q anda ∈ Σ,
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = {(r1, r2)|r1 ∈ F1 or r2 ∈ F2}. ♣

(hey, why not chooseF = F1 × F2?)

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

What About Concatenation?

Thm: If L1, L2 are regular languages, so isL1 ◦ L2.

Example: L1= {good, bad} andL2 = {boy, girl}.

L1 ◦ L2 = {goodboy, goodgirl, badboy, badgirl}

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 22

What About Concatenation?

Thm: If L1, L2 are regular languages, so isL1 ◦ L2.

Example: L1= {good, bad} andL2 = {boy, girl}.

L1 ◦ L2 = {goodboy, goodgirl, badboy, badgirl}

This is much harder to prove.

Idea: SimulateM1 for a while, thenswitchtoM2.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 22

What About Concatenation?

Thm: If L1, L2 are regular languages, so isL1 ◦ L2.

Example: L1= {good, bad} andL2 = {boy, girl}.

L1 ◦ L2 = {goodboy, goodgirl, badboy, badgirl}

This is much harder to prove.

Idea: SimulateM1 for a while, thenswitchtoM2.

Problem: But whendo you switch?

This leads us intonon-determinism.

Slides modified by Yishay mansour on a modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 22

	Critical CS Questions
	Critical CS Questions
	Critical CS Questions
	Critical CS Questions

	Finite Automata
	Finite Automata
	Finite Automata
	Finite Automata
	Finite Automata
	Finite Automata

	Example: A One-Way Automatic Door
	Example: A One-Way Automatic Door
	Example: A One-Way Automatic Door

	The Automatic Door as DFA
	The Automatic Door as DFA

	The Automatic Door as DFA
	The Automatic Door as DFA
	The Automatic Door as DFA

	DFA: Informal Definition
	DFA: Informal Definition

	DFA: Informal Definition (cont.)
	DFA: Informal Definition (cont.)
	DFA: Informal Definition (cont.)
	DFA: Informal Definition (cont.)
	DFA: Informal Definition (cont.)
	DFA: Informal Definition (cont.)

	Informal Definition - Example
	Informal Definition - Example
	Informal Definition - Example
	Informal Definition - Example

	Informal Definition
	Languages and Alphabets
	Languages and Alphabets
	Languages and Alphabets

	Languages and Examples
	Languages and Examples
	Languages and Examples
	Languages and Examples
	Languages and Examples
	Languages and Examples

	Languages and DFA
	Languages and DFA
	Languages and DFA
	Languages and DFA

	Formal Definitions
	Back to M_1
	Back to M_1
	Back to M_1

	Another Example
	And Yet Another Example
	A Formal {�lue Model of Computation}
	A Formal {�lue Model of Computation}
	A Formal {�lue Model of Computation}

	The Regular Operations
	The Regular Operations -- Examples
	Claim: Closure Under Union
	Claim: Closure Under Union
	Claim: Closure Under Union
	Claim: Closure Under Union
	Claim: Closure Under Union

	Closure Under Union: {�lue Correct Proof}
	Closure Under Union: {�lue Correct Proof}
	Closure Under Union: {�lue Correct Proof}
	Closure Under Union: {�lue Correct Proof}
	Closure Under Union: {�lue Correct Proof}
	Closure Under Union: {�lue Correct Proof}

	What About Concatenation?
	What About Concatenation?
	What About Concatenation?

